Dansk spuns- og rammedag Offshore wind farms - Foundations

23 maj 2013

By Hans Pedersen / Jon Kringelum

DONG Energy is an integrated energy company and active throughout the value chain

Wind Power has been leading the offshore wind industry from the very beginning

Piled Foundations

From monopile foundations

To jackets foundations on deeper waters

Monopiles

Jackets

Monopile Foundation Typical

Development of Monopiles

Project	Year Completed	Wind Turbine			Monopiles (MP)			
		Nos	Туре	Size	Dia.	Max Length	Max Weight	
					(m)	(m)	(tons)	
Horns Rev (1)	2002	80	Vestas	2,00 MW	4,0	33	155	
Kentish Flat	2005	30	Vestas	2,75 MW	4,3	41	181	
Burbo Banks	2006	25	Siemens	3,60 MW	4,7	37	234	
Rhyl Flats	2008	25	Siemens	3,60 MW	4,7	37	234	
Linn & Inner Dowsing	2008	54	Siemens	3,60 MW	4,7	41	266	
Robin Rigg	2008	60	Vestas	3,00 MW	4,3	45	264	
Gunfleet Sands I & II	2009	49	Siemens	3,60 MW	4,7	54	423	
Greater Gabbard	2009	140	Siemens	3,60 MW			650	
Sheringham Shoal	2011	90	Siemens	3,60 MW	5,7	60	550	
Walny 1 &2	2011	102	Siemens	3,60 MW	6,5	68	810	
West of Duddon Sands	1013	108	Siemens	3,60 MW	6,0	55	520	
Borkum Riffgrund 1	2014	77	Siemenns	3,60 MW	5,9		683	
Westermost Rough	2014	35	Siemens	6,00 MW	6,5	65	805	
GodeWind 1 & 2	2015	97	Siemens	6,00 MW	7,5	~67	~1012	

Development of Installation Vessels

- From barge modified Jack-ups
- To advanced selfpropelled Jack-ups

Seajack w/ 1200T crane

Pacific Orca w/ 1200T crane

Innovation w/ 1500T crane

.. and Large Heavy Lift Floating Vessels

from the Bridge Building and Offshore industries

Pile Handling

Monopiles on jack-up using up-ending tool

Pile Handling

Floating Piles and Lifting Trunnions

Walney Offshore Wind Farm

Pile Driving

Development of Hydraulic Hammers:

Project	Hammer Energy
Horns Rev 1	600 kJ
Burbo Banks	800 kJ
Lynn & Inner Dowsing	1500 kJ
Lincs	1900 kJ
Coming projects	2000 - 3000 kJ

Pile Driving

Driveability analysis, refusal & drilling:

Noise & Environment

Challenges

- Air-borne Noise: Not an issue when far from shore
- Underwater Noise: Increasing issue

Underwater Noise

Strict Requirement for Noise Emissions in Germany:

Maximum Emission at 750m:		160	dB	(SEL)
Noise Emission for monopile:	~	180	dB	(SEL)
Required noise reduction:	~	20	dB	(SEL)

Tough challenge!

- Noise mitigations must be employed
- Will increase cost and risk in a market committed to reduce the cost of energy!
- The Sound Exposure Level (SEL) sums the acoustic energy over a measurement period and is defined as:

Fig. 3-1 Sound emission from piling increases with pile diameter (ITAP 2012).

 $SEL = 10 \log_{10} \left(\frac{\int_{0}^{T} p(t)^2}{T_0 \cdot p} \right)$

Noise Mitigations

Various suggested methods for Noise mitigation:

- Bubble Curtain
- Cofferdams
- Double walled noise mitigation shields
- ...and a lot more

Big bubble curtain

Cofferdam from Lo-Noise

Noise Mitigation

DONG Energy is committed to mature solutions by:

- 1. Co-orperating with expert companies on development of solutions
- 2. Developing own DONG Energy solutions for detailed design (such as idea for selfstanding Noise mitigation shield or cofferdam supported by suction buckets)

Dong idea: Selfstanding pilegripper with suction buckets and integrated noise reduction shield or cofferdam Appr. dimensions: water depth 30m (+0,0) height shield 35m (top +5,0) outside footprint 25m OD 4m x 5m bucket: OD 8m monopile: ID 9m screen: OD 10,6m (double wall 800mm) screen: ----Weights & boyancy Pilegripper or dry weight: ~ 900 tons rollers not boyancy ~ 700 tons shown positive weight (after boyancy) ~ 200 tons Additional cycletime: 1 hr lift to seabed: 2 hr suction 2 hr extract lift to deck 1 hr total: 6 hr Rubber Loading jack total + wow 12 hours DNG energy Published 23 May 2013 at Dansk spuns og rammedag

Alternative Pile Installation Methods

Use af vibrators:

- Standard pile driving with hammer
- Vibration alone

Alternative Pile Installation Methods

Vibrating equipment available in market

Still need to clarify on geotechnical issues:

- Prediction on "driveability"
- Vertical bearing capacity
- Lateral bearing capacity (p-y curves)

Vibration test at Anholt:

?

